If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5=11-2x
We move all terms to the left:
3x^2+5-(11-2x)=0
We add all the numbers together, and all the variables
3x^2-(-2x+11)+5=0
We get rid of parentheses
3x^2+2x-11+5=0
We add all the numbers together, and all the variables
3x^2+2x-6=0
a = 3; b = 2; c = -6;
Δ = b2-4ac
Δ = 22-4·3·(-6)
Δ = 76
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{76}=\sqrt{4*19}=\sqrt{4}*\sqrt{19}=2\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{19}}{2*3}=\frac{-2-2\sqrt{19}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{19}}{2*3}=\frac{-2+2\sqrt{19}}{6} $
| b^+2b-48=0 | | 0=-1x^2+1.14x+3.5 | | 3x^2-5=11-2x | | 5w+3=33 | | 2/3(x+4)-2/5x=17/6 | | x/10+6=10 | | 4(2a+3)=12 | | 0=16t^2+96t | | 5u/9=35 | | 9x-15^4=x | | 10n+2=62 | | 4(x+1)^2=64 | | 11=8q=3q-19 | | 10y+3=53 | | 7.7j=7623 | | 1/2=x12 | | x+40=40 | | 8(3x+3x+2)=-4x+124 | | 1/7=8/x | | 5+x/10=12 | | (x-2)^(2)=16 | | 4X^2+12X=-48y+159 | | z+19=32 | | 0.20x+0.25(30)=25.5 | | y-1/4=-7/8 | | 5+4x-3=10 | | 7.5(x+1)-3x=0.75(6x-6.8)+16.45 | | 2y=-5/6 | | 6x-3x-7x=4-2 | | z-12=-6 | | 15=32t | | 3/5y+1/4=3/7 |